MNK - прямоугольный тр-к.
HK - высота.
MH = 6см.
Рассмотрим треугольник MHK.
т.к. HK - высота, то угол MHK = 90град. Угол M = 60град. Значит, чтобы найти угол MKH, нужно:
180 - (90+60) = 30град.
Катет, лежащий против угла в 30 град, равен половине гипотенузы.
MH в тр-ке MHK равняется катетом. Сл-но MK = 12.
MN = 24, а HN = 18.
Ответ у Cos был правильным, просто расписала, если непонятно :)
Рассмотрите ΔАСД1, он равносторонний, следовательно искомый угол равен 60°, т. к. является углом этого треугольника
1)cos A = AC/AB
AC = AB•cosA = 9•1/4 = 9/4 = 2.25
2)CB = ✓AB²-AC² = ✓81-(81/4) = ✓324-81/4 = ✓243 / 2 = 9✓3/2 = 4.5✓3
TL{1,5; 2,5}, MN{5;-3}, TL*MN=1,5*5-2,5*3=0
Раз скалярное произведение векторов равно 0, то угол между векторами равен 90°. Угол между векторами TL,MN равен углу LON, ∠LON=90°
пусть АВ=8см, AD=14см, угол А=30гр