Пусть дан ромб ABCD, дианогаль AC которого равна стороне и равна 4. В ромбе все стороны равны, из этого следует, что треугольники ABC и ACD равносторонние. Значит, площадь ромба равна сумме площадей двух равносторонних треугольников со стороной 4. Площадь равностороннего треугольника со стороной a равна
, тогда площадь ромба будет равна 2*(4²√3/4)=2*4*√3=8√3.
Если взять угол при вершине противоположной основанию за x, и зная, что в равнобедренном треугольнике углы при основании равны друг другу, то можно записать решение так:
x - угол при вершине противоположной основанию
x-15 - угол при основании
таких угла 2
сумма всех углов треугольника=180, поэтому можно записать уравнение
x+2*(x-15)=180
x+2x-30=180
3x=210
x=70
x-15=55
углы при основании равны 55 градусов каждый, а оставшийся угол=70
Ов = вс = ос
сов=овс=всо=60
аос=180-60=120
оас=оса=(180-120)/2=30
дуга ас = 120 = центральному углу аос