Ответ:60-------------------------------------------------------------
Пусть а⊥с и b⊥с.
Предположим, что а и b пересекаются в некоторой точке М, но тогда через точку М проходят две прямые, перпендикулярные данной, а это невозможно, значит прямые а и b лежат в одной плоскости и не пересекаются, т.е. а║b.
<span>В основании правильной треугольной пирамиды лежит правильный (равносторонний) треугольник.
Радиус окружности, вписанной в правильный треугольник:
b
r = ----------- , где b - сторона правильного треугольника
2</span>√3
b = r * 2√3
b = 3√3 * 2√3 = 6 * 3 = 18 (cм)
Периметр треугольника - сумма длин всех сторон
p = b + b + b = 3b
p = 3 * 18 = 54 (cм)
Площадь боковой поверхности правильной пирамиды равна произведению полупериметра основания на апофему:
S= 1/2 * p * a, где p - периметр основания пирамиды, а - апофема
S = 1/2 * 54 * 9 = 243 (cм²)