Решение в прикрепленном файле.
Вот ответ. У меня эта тема давно была, но я надеюсь, что правильно решила.
Параллельные прямые отсекают в окружности равные дуги, которые соответствуют равным хордам. Это все.
Можно объяснить, почему там равные дуги - равны накрест лежащие внутренние углы при этих параллельных (основаниях) и диагонали трапеции. Значит равны дуги, на которые они опираются.
А вписанный угол опирающийся на дугу измеряется половиной дуги, потому что его можно разделить (или дополнить) диаметром, и каждый из получившихся уголов является углом между диаметром и хордой, и соединяя центр с концом хорды, мы получаем равнобедренный треугольник, у которого 2 угола при основании равны исходному, а центральный угол будет внешним, равным их сумме, то есть центральный угол в 2 раза больше вписанного. Раз это верно для угла между любой хордой и диаметром (имеющими общий конец), то верно вообще для любого угла
Воспользуемся формулой площади треугольника S=1/2*a*b*sin(C), где a,b - стороны треугольника, а sin(C) - синус угла между ними. Пусть a и b - боковые стороны равнобедренного треугольника, а C - угол при вершине, который нам известен. Мы знаем, что a=b, а sin(C)=sin(150)=1/2. Таким образом, S=1/2*a*a*1/2=1/4*a². Из условия известно, что S=1/4*a²=100 или a²=400. Значит, a=20, то есть, боковая сторона треугольника равна 20.
180-78=102 угл 2=72 тк соответствующие углы равны