треугольник ADM= треугольнику BCM по 3-ему признаку равенства треугольников( по 3-ём стронам AD=BC, DM=MC т.к пар-м, BM=MA т.к противоположные строны пар-ма.) Из равенства треугольников следует равенство уголов : угол D= углу C т.к лежат против равных сторон. угол D+ угол C=180 градусов (сумма односторонних уголв пар-ма) откуда угол D=углу C=90 градусов.А значит пар-м прямогугольник.
угл К= 180-150=30
следовательно, МР= 0,5 гипотенузы = 6см
Пусть SO высота пирамиды.
Для грани SAB построим линейный угол двугранного угла. Для этого проведем из точки О перпендикуляр ОН к ребру основания АВ. ОН - проекция SH на плоскость основания, значит SH⊥AB по теореме о трех перпендикулярах.
∠SHO = 60° - линейный угол двугранного угла.
Аналогично строим линейные углы наклона всех боковых граней.
SΔaob = АВ · ОН / 2
SΔsab = AB · SH / 2
Saob / Ssab = OH / SH = cos∠SHO = cos60° = 1/2
Saob = Ssab/2
Так как все боковые грани наклонены под одним углом, для каждой боковой грани и ее проекции мы получим такое же отношение.
Значит, площадь основания равна половине площади боковой поверхности:
Sосн = Sбок/2 = 36/2 = 18
Первый рисунок параллелен.
Здравствуйте, здесь решение будет выглядеть следующим образом:если МЕ-диаметр,то дуга МЕ =180 градусов=>дуга КЕ=дуга МЕ-дуга МК=180-116=64 градуса.угол КМЕ=1/2•дуге КЕ=1/2•64=32 градуса; Ответ:32 градуса