А) ∠( AC, AB) = 90°, т.к. угол между сторонами квадрата равен 90°;
б) Переносим параллельным переносом вектор DA так, чтоб его начало было в точке А.
Тогда угол между векторами DA и AB равен 90° + 45° = 135°;
в) ∠(OA, OB) = 90°, т.кю угол между диагоналями квадрата равен 90°;
г) (тут то же самое, что и под буквой в);
д) Аналогично ∠(OA, OC) = 90°, т.к. угол между диагоналями равен 90°;
е) Векторы AC и BD сонаправлены, значит, угол между ними равен 0°.
ж) Переносим вектор DB параллельным переносом так, чтоб его начало совпадало с точкой А.
Тогда ∠(AD, DB) = 135°.
з) Переносом вектор OC параллельны переносом так, чтоб его начплао совпадало с точкой А.
Угол между векторами остался таким жеч как и угол между диагоналями, т.е. 90°.
Пусть АВ — данный отрезок, С — точка на нем, такая что АС : СВ = 3 : 7.
АА1, СС1, ВВ1 — перпендикуляры, опущенные из точек А, С, В на плоскость α АА1 = 0,3м, ВВ1 = 0,5м.
По теореме 18.4 отрезки АА1, ВВ1, СС1 параллельны, и значит, лежат в одной плоскости. Точки А1, С1, В1 лежат на прямой пересечения этой плоскости с плоскостью а.
Проведем из точки А прямую AD параллельную А1В1, значит AD ⊥ BB1. Тогда АА1С1К — прямоугольник. Так что КС1 = АА<span>1 </span>DB1=0,3 м.
ΔАСК ~ ΔABD так как СК параллельна
Уравнение
<span>35*х+30*а=320 </span>
<span>7х+6а=64 </span>
<span>х=4 глубокие тарелки </span>
<span>а=6 маленькие. </span>
<span>Проверим </span>
<span>35*4+30*6=140+180=320</span>
Решение трех во вложении. в первом не поняла,что надо найти