Точка О - центр пересечения медиан равностороннего треугольника. она же центр описанной окружности
R = OA = AB/корень(3)=6/корень(3)
в треугольнике АОМ
ОМ = 6
OA = 6/корень(3)
значит угол МАО = arctg(MО/ОА)=arctg(6/(6/корень(3)) = arctg(корень(3)) = 60
Против меньшего катета дежит меньший угол
Определим гипотенузу с²=48²+14²=2304+196=2500.
с=√2500=50
sinα=14/25=0,56.
α=34°.
Прямоугольный ΔSOC: катет SO=5 см, гипотенуза SC=10 см, => <SCO=30°. катет против угла 30° в 2 раза меньше гипотенузы.
<CSO=60°. => <ASO=60° (по условию О- центр правильного треугольника, => SABC - правильная пирамида).