62+9= 71=угол А
так как в равнобедренной трапеции углы при основании равны, то угол А= углу D=71 градус
Чтобы найти угол B или угол C, нужно 360-(71*2)=218, и полученное разделить на 2, получится 109 градусов.
Дано:
Выпуклый 4х-угольник PKTN
PN=PK, TK=TN
Доказать:
1) ΔPNT=ΔPKT
2) PT - биссектриса ∠P
3)NK⊥PT
Док-во:
1) Рассмотрим ΔPNT и ΔPKT:
- PK=PN (по условию)
- TK=TN (по условию)
- PT - общая сторона
Из этого всего следует, что ΔΔ= по 3 сторонам.
Ч.Т.Д.
2) Т.к. ΔPNT=ΔPKT, то ∠NPT=∠KPT (если ΔΔ=, то = их соответствующие элементы). Следовательно, PT является биссектрисой ∠P.
Ч.Т.Д.
3) Пусть точка пересечения NK и PT будет названа О.
Т.к. ΔPNT=ΔPKT, то ∠NOP=∠KOP (если ΔΔ=, то = их соответствующие элементы), а т.к. ∠NOP и ∠KOT; ∠KOP и ∠NOT вертикальные, то получается: ∠NOP=∠KOT=∠KOP=∠NOT. Сумма этих углов = 360°, поэтому каждый угол будет=360°:4=90°.
Ч.Т.Д.
1 сопсоб.
Sabc = Sadc = Sabcd/2
AE - медиана ΔADC. Медиана делит треугольник на два равновеликих, значит,
Seca = Secd = Sadc/2 = Sabcd/4
Saecb = Sabcd - Secd = Sabcd - Sabcd/4 = 3Sabcd/4
Saecb = 3 ·144 / 4 = 3 · 36 = 108
2 способ.
Проведем ЕН⊥BC. ЕН - высота параллелограмма и трапеции.
Sabcd = BC · EH = 144
Saecb = (BC + AE)/2 · EH = (BC + BC/2)/2 · EH = 3/4BC · EH = 3/4Sabcd
Saecb = 3 ·144 / 4 = 3 · 36 = 108
Ответ:
Объяснение:
a2=b2+c2-2bc*cosA
cosA= (b2+c2-a2)/2bc
cosA=0,63
A=51 градусов
Второй угол находишь по такому же принципу. Третий - по теореме о сумме углов в треугольнике
AC-5
ДВ-12
от начала"А"
и до конца"В"
складываем
5+12=17(AB)
ответ:17