По теореме Пифагора АС=кореньиз (64-60)=2.
Sin(B)=AC/AB=2/8=1/4.
Ответ: 1/4.
1. Прямая, имеющая с окружностью две общих точки, называется секущей. Прямая, имеющая с окружностью только одну общую точку, называется касательной.
2. Прямоугольник - частный случай параллелограмма, поэтому он обладает <em>свойствами диагоналей параллелограмма</em>:
диагонали параллелограмма точкой пересечения делятся пополам;
диагональ делит параллелограмм на два равных треугольника;
сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Отличительное <em>свойство диагоналей прямоугольника</em>:
диагонали прямоугольника равны.
Проведём высоту в пирамиде. Проведём перпендикуляры из основания высоты к 4 сторонам, если соединить вершину с точками пересечения, то получаться так же перпендикуляры (по теореме о 3 перпендикулярах), получаются 4 прямоугольных треугольника у которых общий катет и один равный угол (по условию, а так же двугранный угол это линейный угол между 2 перпендикулярами принадлежащих разным плоскостям), то есть эти треугольники равны. Значит в 4 боковых треугольника равны высоты (это гипотенуза от тех прямоугольных треугольников). Так же заметим, что из основания высоты пирамиды проведены 4 перпендикуляры, которые как оказалось равны, то есть это радиусы вписанной окружности в ромбе. Если посмотреть на диаметр этой окружности, то можно заметить, что он перпендикулярен к стороне ромба, то есть радиус это половина высоты от ромба. Высоту в ромбе можно найти перемножив синус угла между смежными сторонами и саму сторону. Далее можно найти радиус ( :2 ). Площадь основания (ромба) можно найти умножим высоту ромба на его сторону. Теперь отвлечёмся от основания и снова посмотрим внутрь пирамиды, там были 4 прямоугольных треугольника, мы теперь знаем его катет, тот что снизу (это радиус вписанной), а так же по условию мы знаем прилежащий к этой стороне острый угол, то есть мы можем найти гипотенузы (поделив катет на косинус угла), как уже было сказано это гипотенуза есть высота в 4 боковых треугольниках пирамиды. У них основание все равны т.к. ромб и высоты тоже все равны, то есть площади все одинаковы. А площадь одного бокового треугольника стоит найти перемножим высоты на сторону и поделив пополам, но у нас же 4 одинаковый площади, так что сразу домножаем на 4 (можно не делить пополам, а сразу умножить на 2). Далее мы складываем площадь основания и боковых ребер. Приведу пример для вычисления площади по моим рассуждениям.
Ответ: 54дм
А)1) Б)3) В)2)
Потому что в А) к>0 и в>0
В Б) к<0 и в>0
В В) к<0 и в <0
Дано:
Куб abcda1b1c1d1
Прямые a1c1, cb1 - диагонали
Найти угол между прямыми
Решение:
ВС1 и А1С1 - диагонали граней куба. Они образуют угол А1С1В.
Соединив вершины куба В и А1 отрезком. ВА1, получим треугольник со сторонами, которые являются диагоналями равных квадратов и потому равны.
Рассмотрим треугольник ba1c1
Треугольник ВА1С1 - равносторонний.
Все его углы равны 60°.
Следовательно, угол между прямыми ВС1 и А1С1 равен 60°.