Теорема. (Свойство противолежащих углов параллелограмма) .
У параллелограмма противолежащие углы равны.
Доказательство.
Пусть ABCD – данный параллелограмм. И пусть его диагонали пересекаются в точке O.
Из доказанного в теореме о свойства противолежащих сторон параллелограмма Δ ABC = Δ CDA по трем сторонам (AB=CD, BC=DA из доказанного, AC – общая) . Из равенства треугольников следует, что ∠ ABC = ∠ CDA.
Так же доказывается, что ∠ DAB = ∠ BCD, которое следует из ∠ ABD = ∠ CDB. Теорема доказана
А=40 градусов, в= 35 градусов
1/2(6+25+39)=1/2*70=35дм^2
S=корень 19*10*6=2корень285
<em>Угол CDA=180-120=60</em>
<em>Угол СAD=30 т.к Сумма всех углов треугольника 180 , 180-(90+60)=30.</em>
<em>sinA= CD/AD</em>
<em>AD=CD/sinA</em>
<em>AD=6/sin30</em>
<em>AD=6 : 1/2=12</em>
<em>DB=AD=12</em>
<em>Раз DB=AB,то FDC равнобедренный и угол DAC=ABD=180-120=60</em>
<em>По т.косинусов AB^2=AD^2+DB^2-2AD*DB *cos 120 (cos 120=-cos60)</em>
<em>Ab^2=144+144-288*(-1/2)</em>
<em>AB^2=288+144</em>
<em>Ab^2=432</em>
<em>AB=20,7846см</em>
<em>AB=21</em>
<em>Ответ:21см</em>
Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
tg∠A = ВС: АС ⇒ ВС= АС·tg∠A=12·(3/4)=9
По теореме Пифагора
АВ²=ВС²+АС²
АВ²=9²+12²=81+144=225
АВ=15
Ответ. 15