<span>а)
все грани правильной пирамиды равны;
не верно. В правильной пирамиде равны боковые грани, а все грани равны только в тетраэдре.
б) площадь боковой поверхности
правильной усеченной пирамиды равна произведению суммы периметров
оснований на апофему;
не верно, </span><span><span>произведению полусуммы периметров
оснований на апофему</span>
в) боковые грани усеченной пирамиды - трапеции;
верно.
г)
утверждения а-б не верны.
</span>
верно.
Судя по тому, что точки С и D расположены дальше точек А и В - прямые скрещивающиеся.. В случае пересечения прямых точки на плоскостях либо были бы на одном расстоянии от нас, наблюдателей, либо если С дальше, то В ближе и наоборот.
А вот и более "геометричное" рассуждение:
Если бы прямые пересекались, то они находились бы в одной плоскости. К этой плоскости бы принадлежали и точки А, В, С, D
Убедимся, что это не так, для этого предположим, что прямые пересекаются.
На любой плоскости, пересекающей параллельные плоскости должны образоваться в местах пересечения Параллельные прямые.
Проведем прямые через АС и ВD. Эти прямые не параллельны, значит они не могут принадлежать одной плоскости, пересекающей две данные плоскости (ведь плоскости эти по условию параллельны). Следовательно, предположение не верно, данный прямые не лежат в одной плоскости, значит они скрещивающиеся.
Ура!))
А вот я так думаю, что объем пирамиды можно сосчитать так
V = (6*6/2)*6/3 = 36.
Это не тетраэдр. Такая пирамида получается, если взять три взаимно перпендикулярные ОСИ и провести плоскость, отсекающую на осях отрезки, равные 6.
Прямоугольный треугольник с катетами 6 (один из трех) принимается за "основание", а перпендикулярное плоскости этого треугольника третье ребро длины 6 - за высоту, и все дела.