<span>Пусть х = боковая сторона. Тогда х+15 = основание. Проводим высоту и имеем два прямоугольных треугольника. </span>
<span>решим один из них по теореме пифагора. Очевидно, что катеты равны 15 и (х+15):2, поэтому уравнение пифагора имеет вид х2 = 225+ (х2+30х+225):4 </span>
<span>(х2 = это икс в квадрате) </span>
<span>То есть 4х2= 900 + х2+30х+225, переносим все в одну сторону и тогда 3х2-30х-1125 =0, или же х2-10 х - 375 = 0. Дискриминант равен 40 (посчитать по формуле), </span>
<span>х = (10-40):2 нам не годится, а вот х = (10+40): 2 = 25 канает. Это была сторона равноб. треуг. А основание его = 25+15 = 40.</span>
Треугольник АВС подобен треугольнику ЕВК по двум пропорциональным сторонам и углу между ними.
(АВ/ВЕ=СВ/ВК=5/2, угол В-общий) , АС=ЕК*(5/2)=4*2,5=10 см.
Из по добия треугольников следует, что угол ВЕК=углу ВАС-это соответственные углы, образованные при пересечении прямых ЕК и АС секущей АВ. Поэтому прямые ЕК и АС параллельны.
<span>Прямая ЕК, не лежащая в плоскости альфа, параллельна прямой АС, лежащей в плоскости альфа. Значит, прямая ЕК параллельна плоск ости альфа .</span>
АВ-гипотенуза, ВС- катет, тогда sinА=СВ:АВ=1/2, а это 30*, тогда второй угол будет 60*, т.к. сумма острых углов прямоугольного треугольника равна 90*, т.к. высота, проведена из прямого угла, то мы получаем два прямоугольных треугольника с теми же углами. Ответ: 60* и 30*