опустим высоту так, чтобы получился прмоугольный треугольник с гипотенузой ВД=12см. Его углы 60,90 и 30град. Напротив угла 30град лежит катет равный 1/2 гипотенузы - 6см. Это больший отрезок большего основания, который отсекла высота в равнобедренной трапеции. По определению он равен полусумме оснований, что также и средняя линия линия трапеции. Т.е средняя линия указанной трапеции равна 6см
1) Закрашены 3/4 круга с радиусом R=3-м сторонам клеточек=3*(1/√П)=3/√П .
Площадь всего круга = ПR²=П*(3/√П)²=П*(9/П)=9
3/4 от площади круга = 3/4*9=27/4=6,75
2) Достроим фигуру до прямоугольника размером 8×9 и вычтем площади
четырёх треугольников:
S=8*9-0,5*(1*2+8*7+1*1+6*8)=72-0,5*107=72-53,5=18,5
Построим равнобедренную трапецию АВСД боковая сторона которой
равна 4 дм, а угол при большем основании равен 30 градусов с основаниями АВ и
СД.
Построим высоту ВМ.
Найдем
высоту трапеции:
Катет
противолежащий углу в 30 градусов равнее половине гипотенузы, значит
<span>ВМ =4/2=2
дм.</span>
<span>Площадь
трапеции равна
S= 1/2 (a+b) h (где a и b – основания трапеции h
высота)</span>
В
четырехугольник окружность можно вписать только в том случае, если суммы его
противоположных сторон равны. т.е.: АД+ВС=АВ+СД=4+4=8 дм
Найдем
площадь данной трапеции:
<span>S (т)=1/2*8*2=8 кв. дм.</span>
Радиус
вписанной в трапецию окружности
<span>r=h/2=2/2=1 дм.</span>
Формула
площади круга:
<span>S=π r^2</span>
Площадь
данного круга:
<span>S(к)=3,14*1^2=3.14 <span>кв. дм.</span></span>