Узнаем во сколько раз увеличился объем
V=πr²h - 0,25 кг
R=2r H=2h
V=πR²H=π*4r²*2h=8πr²h - 0,25*8=2 кг
Вся окружность составляет 360 градусов
3 угла между радиусами,. проведенными к основаниям относятся как 2:3:4.
Значит:
2х+3х+4х=360
9х=360
х=40
Мы узнали коэффициент соотношения, теперь вычислим сами углы.
Они будут 2х 3х и 4х
80 градусов 120 градусов и 160 градусов.
Рассмотрим любой из треугольников образованных:
1. Радиусом, уже проведенным к точке касания
2. Отрезком от середины окружности до любой вершины.
3. Отрезком (часть стороны) от точки касания до вершины.
В этом треугольнике угол между радиусом и касательной будет равен 90 градусов, т.к. радиус проведенный к касательной всегда ей перпендикулярен.
Угол этого треугольника у центра О будет равен половине найденного нами из соотношения (2:3:4). Пусть например это будет половина угла 80 градусов, т.е. 40 градусов.
Тогда получается, что мы рассматриваем треугольник у которого один угол 90 градусов, другой 40, третей будет 180-90-40=50 градусов. Это будет половина угла при вершине большого треугольника. Весь угол будет 100 градусов.
Аналогично находим угол при второй вершине:
180-60-90=30. -- половина угла
30*2=60 --- угол при второй вершине.
Угол при третьей вершине будет
180-60-100=20 градусов.
Угол DAB+BAC=180 угол A=180-110=70
Сумма углов любого треугольника равно 180, найдем угол C
угол C=180-(40+70)=70
Ответ а (да, нет, наверное)
<span>Если проведём осевое сечение через апофему боковой грани, то получим прямоугольный треугольник OSE.
Катет этого треугольника ОЕ равен половине стороны основания.
Значит, ОЕ = 8/2 = 4 см, то есть, треугольник равнобедренный и угол при основании равен 45 градусов.
Он и есть искомый </span><span>угол, который образует боковая грань с плоскостью основания.</span>