4-5x=1-2(x+3)4-5х=1-2х-6
-5х+2х=-6-4+1
-3х=-9
х=3
Найдём нули функции у = х² - 16, для этого решим уравнение
х² - 16 = 0
х1 = -4
х2 = 4
Поскольку график функции у = х² - 16 - квадратная парабола веточками вверх, то у ≤ 0 в промежутке между х1 и х2, включая эти точки.
Ответ: х ∈ [ -4; 4]
A=7 см a*b=301 cм Р-?
b=301:а=301:7=43
Р=2*7+2*43=14+86=100 (см).
Ответ: Р=100 см.
1) (5a^2+b) + (-4a^2-b) = 5a^2 + b - 4a^2 - b = 5a^2 - 4a^2 = a^2
2) (2p^2 - 3q^3) - (2p^2 - 4q^3) = 2p^2 - 3q^3 - 2p^2 + 4q^3 = -3q^3 + 4q^3 = q^3
3) (a^2 - b^2 + ab) + (2a^2 + 3ab - 5b^2) + (-4a^2 + 2ab - 3b^2) = a^2 - b^2 + ab + 2a^2 + 3ab - 5b^2 - 4a^2 + 2ab - 3b^2 = 3a^2 - 9b^2 + 6ab
4) (2a^2 - 3ab +4ab^2) - (3a^2 + 4ab - b^2) + (a^2 + 2ab - 3b^2) = 2a^2 - 3ab + 4ab^2 - 3a^2 - 4ab + b^2 + a^2 + 2ab - 3b^2 = 4ab^2 - 5ab - 2b^2
1
f(x)=-x²/2-3 M(-3;1/2)
F(x)=-x³/6-3x+C
9/2+27+C=1/2
C=1/2-31 1/2
C=-31
F(x)=-x³/6-3x-31
2
y=cos(x/2) M(π/3;1)
F(x)=2*sin(x/2)+C
2*sin(π/6)+C=1
2*1/2+C=1
C=0
F(x)=2sin(x/2)