Основанием такой пирамиды является квадрат. Vпир =1/3 S осн *H пир. Объем пирамиды равен 1/3 площади основания умножить на высоту пирамиды.Боковая поверхность наклонена к основанию под углом 45 гр,тогда апофема (высота боковой грани пирамиды),Высота самой пирамиды и отрезок ,соединяющий основания этих высот(который равен половине стороны основания) образовали прямоугольный равнобедренный треугольник, катеты ,которого равны 3 см.. Тогда сторона квадрата равна 6, а площадь основания =36. V=1/3*36*3=36 см кубическим.
Ответ:
Р= 64 см - периметр осевого сечения конуса
Объяснение:
рассмтрим прямоугольный треугольник:
катет h(h>0) - высота конуса
гипотенуза (h+1) - образующая конуса
катет R=7 см - радиус основания конуса
теорема Пифагора:
(h+1)^2=h^2+R^2
h^2+2h+1=h^2+49
2h=48
h=24 см
d=2R - диаметр основания конус
d=14см
сечение конуса - равнобедренный треугольник, стороны которого равны:
а=b=25 см (h+1=24+2) - образующие конуса
c=14 см (d=14) - диаметр основания конуса.
периметр:
Р=25+25+14=64
В трапецию можно вписать окружность когда сумма боковых сторона равна сумме оснований. Пусть основания равны
. Боковая сторона равна
. Тогда
равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.<span>Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВС<span>периметр = 10+10+12=32</span></span>
В параллелограмме противоположные стороны параллельны и равны.
∠BAM=∠DAM (AM - биссектриса ∠BAD)
∠BMA=∠DAM (накрест лежащие при BC||AD)
∠BAM=∠BMA, △ABM - равнобедренный, AB=BM
Аналогично CD=CK
AB=CD => BM=CK => BK=CM
△APD~△MPK (по двум углам)
AD/MK=AP/PM =3/2
AD=BC =MK+2BK
MK= 2/3 AD => 2BK= 1/3 AD => AB =BK+MK =5/6 AD => BC= 6/5 AB =18