5sin37*cos37/cos37*(-sin37)=-5
Пусть а - первое число, тогда (а+1) - второе число, (а+2) - третье число.
а² - квадрат первого числа, (а+1)(а+2) - произведение второго и третьего чисел. По условию задачи квадрат меньшего из них на 47 меньше произведения двух других. Составляем уравнение
(а+1)(а+2)-a²=47;
a²+2a+a+2-a²=47;
3a+2=47;
3a=47-2;
3a=45;
a=45/3=15.
Первое число равно 15, второе число равно 15+1=16, третье число равно 15+2=17.
Ответ: 15; 16; 17.
Схема задачи:
Дано: а, а+1, а+2 - последовательные натуральные числа
Известно: а² - квадрат меньшего числа, (а+1)(а+2) - произведение двух других, 47 - разность произведения двух других чисел и меньшего числа
Уравнение: (а+1)(а+2)-а²=47
Решение уравнения: см. выше
Ответ: 15; 16; 17.
Пусть ABCD — прямоугольник, АК ⊥ ABCD. Значит КС = 9м; пусть КВ = 7м, KD = 6м.
∠КВС = 90° (по теореме о трех перпендикулярах), поэтому ВС2 = =КС2 - КВ2 = 92 - 72 = 32 (м2) (по теореме Пифагора).
Далее AD2 = ВС2 (так как ABCD — прямоугольник). Поскольку KA⊥AD, то
АК=корень KD²-AD² =корень 36-32=корень 4=2 м.
Сорян за подчерк, решала быстро
1. ...=а-2+а-3+2а-7=4а-12=4(а-3);
2. ...=2а-6-5а-6=-3а-6-6=-3а-12;
3. ...=-6х+27-5х+1=-11x+28;
4. ...=x-3+x-5-7+3x=5x-15=5(x-3);
5. ...=-2m+6-3m+5=-5m+6+5=-5m+11;
6. ...=8a-4+7-5a=3a-4+7=3a+3.