У/2-у/8=у/4-1 |:8
4у-у=2у-1
4у-у-2у=-1
у=-1
Подставляем значения известные нам точек в наше уравнение:
A) х=2; у=-1. 5*(-1) - 3*2 = -1; -11 = -1 - неверное равенство, значит наш график не проходит через точку (2;-1).
В) х=-2; у=1. 5*(1) - 3*(-2) = -1; -1 = -1 - верное равенство, значит наш график проходит через точку (-2;1), то есть это и есть правильный ответ. Даьше можно не проверять.
1 число - х
2 число - у
система ур-ий
х+у=14
ху=36,75
выражаем из 1 ур-ия х
х=14-у
подставляем во 2 ур-ие
(14-у)*у=36,75
14у-у^2-36.75=0
y^2-14у+36,75=0
решаем квадратно ур-ие
D=(-14)^2-4*1*36.75=196-147=49
х1=(-(-14)+)/2*1=(14+7)/2=21/2=10,5
х2=(-(-14)-)/2*1=(14-7)/2=7/2=3,5
корни уравнеия (10,5 и 3,5)
х=10,5
тогда у=14-10,5=3,5
х=3,5
тогда у = 14-3,5=10,5
1.
а) 2sin²x=1-cosx
2(1-cos²x)=1-cosx
2-2cos²x=1-cosx
-2cos²x+cosx+1=0
2cos²x-cosx-1=0
Пусть cosx=y
2y²-y-1=0
D=1-4*2*(-1)=9
y₁=<u>1-3</u>=<u>-1 </u>
4 2
y₂=<u>4 </u>=1
4
cosx=<u>-1 </u>
2
x=<u>+</u> arccos(-¹/₂)+2πn
arccos(-¹/₂)=π-arccos¹/₂=π-<u>π </u>=<u>2π</u>
3 3
x=<u>+</u> <u>2π</u> + 2πn
3
cosx=1
x=2πn
Ответ: х₁=<u>+</u><u> 2π </u>+2πn
3
x₂=2πn
б) 5sin²x-5sinxcosx+2 cos²x=1
Представим 1=sin²x+cos²x и поделим все на cos²x:
<u>5sin²x</u> - <u>5sinxcosx </u>+ <u>2cos²x</u>=<u>sin²x </u>+ <u>cos²x</u>
cos²x cosx cosx cos²x cos²x cos²x
5tg²x-5tgx+2=tg²x+1
5tg²x-tg²x-5tgx+2-1=0
4tg²x-5tgx+1=0
Пусть tgx=y
4y²-5y+1=0
D=25-4*4=9
y₁=<u>5-3</u>=<u> 1 </u>
8 4
y₂=<u>5+3</u>=1
8
tgx=<u>1 </u>
4
x=arctg¹/₄+πn
tgx=1
x=arctg1+πn
x=<u>π </u>+ πn
4
Ответ: х₁=arctg ¹/₄ +πn
x₂=<u>π </u>+πn
4
в) cosx+sinx-cos3x=0
cosx-cos3x+sinx=0
-2sin <u>x+3x</u> sin <u>x-3x</u> + sinx=0
2 2
-2sin2x sin(-x) + sinx=0
2sin2x sinx+sinx=0
sinx(2sin2x+1)=0
sinx=0 2sin2x+1=0
x=πn 2sin2x=-1
sin2x=-¹/₂
2x=(-1)^n * arcsin(-¹/₂) +πn
2x=(-1)^(n+1)*arcsin¹/₂ +πn
2x=(-1)^(n+1)*<u>π </u>+ πn
6
x=(-1)^(n+1) *<u>π </u>+ <u>πn</u>
12 2
Ответ: х₁=πn
x₂=(-1)^(n+1) * <u>π </u>+ <u>πn</u>
12 2
г) cosx+√3 sinx=0
Делим на cosx:
<u> cosx</u> + √3<u> sinx</u>=0
cosx cosx
1+√3 tgx=0
√3 tgx=-1
tgx=<u>-1 </u>
√3
tgx=<u>-√3</u>
3
x=arctg<u>(-√3</u>)+πn
3
x=-arctg <u>√3</u> +πn
3
x=<u>-π</u> + πn
6
Ответ: х= <u>-π </u>+πn
6
д) cosx+sinx=√2
Делим на cosx:
<u> cosx </u>+<u> sinx </u>=<u> √2 </u>
cosx cosx cosx
<em> </em><em />1+tgx =<u> √2 </u>
cosx
Применяем формулу:
1+tg²x= <u> 1 </u>
cos²x
<u> 1 </u>=√(1+tg²x)
cosx
Получаем:
1+tgx=√2 *√(1+tg²x)
Возводим обе части уравнения в квадрат:
(1+tgx)²=(√2)² * (√(1+tg²x))²
1+2tgx+tg²x=2(1+tg²x)
1+2tgx+tg²x=2+2tg²x
tg²x-2tg²x+2tgx+1-2=0
-tg²x+2tgx-1=0
tg²x-2tgx+1=0
(tgx-1)²=0
tgx-1=0
tgx=1
x= arctg 1 +πn
x=<u>π </u>+ πn
4
Ответ: х=<u>π </u>+πn
4
<span>2x+4+x^2+2x = x</span>² + 4x + 4 = (x + 2)² = (x + 2)(x + 2)