sin²α + cos²α = 1
cos²α = 1 - sin²α = 1 - (3/7)² = 1 - 9/49 = 40/49
Синус угла положительный, значит угол принадлежит 1 или 2 координатной четверти.
Если угол α принадлежит 2 координатной четверти, то косинус угла отрицательный:
cosα = - √(40/49) = - 2√10/7
tgα = sinα/cosα = 3/7 · 7/(- 2√10) = - 3 / (2√10) = - 3√10 / 20.
Если угол принадлежит 1 координатной четверти, то его косинус положительный:
cosα = √(40/49) = 2√10/7
tgα = sinα/cosα = 3/7 · 7/(2√10) = 3 / (2√10) = 3√10/20.
1) 3+2+4=9 частей приходится на весь периметр
2) 27см:9=3 см - приходится на 1 часть
3) 3 см * 3 =9 см - 1-я сторона
4) 3 см * 2=6 см - 2-я сторона
5) 3 см *4=12 см - 3-я сторона
Поскольку А центр окружности проходящей через точку В, АВ является радиусом этой окружности. В прямоугольнике все углы прямые, значит сторона ВС перпендикулярна АВ, то есть является касательной к окружности в точке В, тк касательная всегда перпендикулярна к радиусу окружности в точке касания.