Площадь трапеции равна произведению средней линии на высоту.
Средняя линия трапеции равна 10+22 = 32 см.
Так как диагональ является биссектрисой острого угла, то боковая сторона равна меньшему основанию.
Меньшее основание и боковая сторона равны 10*2 = 20 см,
большее основание равно 22*2 = 44 см.
Тогда высота трапеции равна √20^2 - ((44 - 20)/2)^2 = √256 = 16 см.
И, наконец, площадь равна 16*32 = 512 кв. см.
Ответ: 512 кв см
1. угол А = угол С - т.к. АВСD - параллелограмм
угол В = угол D - т.к. АВСD - параллелограмм
2. угол С = 80 градусов
3. угол B - угол A = 30 градусов
угол В - 80 = 30
угол В = 110 градусов
4. угол D = 110 градусов
∠МА₁В₁ и ∠МАВ соответственные при пересечении параллельных прямых А₁В₁ и АВ секущей МА, значит
∠МА₁В₁ = ∠МАВ.
Значит, равны и половины этих углов:
∠МА₁К₁ = ∠МАК.
А эти углы - соответственные при пересечении прямых А₁К₁ и АК секущей МА, значит А₁К₁║АК, т. е. они не могут пересекаться.
C1=2pir1 - длина большей окружности. C2=2pir2 - длина меньшей окружности.
r1-r2=1/2pi(C1-C2) - ширина кольца.
2) Наибольший отрезок - отрезок касательной к меньшей окружности внутри большей. Пусть В - точка касания. ОА=26; OB=10; По теореме Пифагора AB^2=26^2-10^2=576. AB=24. Длина максимального отрезка равна 2AB=48
3) Сектор - часть круга, ограниченная двумя радиусами. окружность- 360 градусов. Чтобы узнать какую часть круга составляет сектор нужно величину угла сектора разделить на 360, например, 30/360=1/12.
Итак, полупериметр p = (5 + 6 + 7)/2 = 9;p - 5 = 4; p - 6 = 3; p - 7 = 2;S^2 = 9*4*3*2 = 6^2*6;<span>S = 6*√6; правда просто? :)</span><span>R = 5*6*7/(4*6*√6) = 35*√6/24;</span> Кто не в курсе, формула R = abc/4S легко получается из a = 2RsinA; S = hb/2;sinA=h/c;исключением h и sinA;<span>h - высота к стороне b, A - угол напротив стороны а, первое уравнение это теорема синусов.</span>