По теореме синусов BC/sinA=AC/sinB
AC=ВС*sinB/sinA=3*sqrt(3)
Три корня квадратных из трех - на всякий случай.
Пусть высота проведенная из прямого угла А (треугольника АBC) будет обозначена АК. Тогда ВК является проекцией стороны АВ на гипотенузу ВС, а КС -проекцией АС на гипотенузу. Согласно формулам : АВ=√ВК*ВС и АС=√КС*ВС.
Мы знаем соотношение катетов АВ и АС = 6:5, значит надо составить пропорцию АВ/АС=√ВК*ВС/√КС*ВС, ВС сокращается и получаем , что ВК/КС=(АВ/АС)^2=36/25
Зная ,что ВК больше КС на 11см, получаем ВК=КС+11, подставим в предыдущую формулу, получим
(КС+11)/КС=36/25
25(КС+11)=36КС
25КС+275=36КС
11КС=275
КС=25см
ВК=25+11=36см, значит гипотенуза ВС=ВК+КС=25+36=61см
Отве: 61см
Диаметр окружности, описанной около прямоугольного треугольника равен
гипотенузе. Длина окружности С = pi*d ---> гипотенуза с = d = C/pi =16pi/pi=16(см)
Катет b =V(c^2 - a^2) = V(16^2 -4^2) = V(256 - 16) = V240 (см)
Sтреуг. = 1/2a*b = 1/2*4*V(16*15) = 2*4*V15 = 8V15(см^2)
Ответ. 8V15(см^2)
Пусть основание будет Х, тогда боковая сторона 5/2Х
P=a+b+c
P=X+5/2X+5/2X=48
X+5X=48
6X=48
X=8 см - основание
5/2Х=5/2*8=20 см - боковая сторона
МК может быть равным 15+18=33см если точка К лежит по одну сторону с точкой N
МК может быть равно 18-15=3см если точка N лежит между точками М и К