<em>На основании только этих данных доказать подобие трапеций невозможно. </em>
Средняя линия трапеции равна полусумме ее оснований
В трапеции АВСD
(DC+AD)=11*2=22(см)
АD=2+4+7=13(частей)
ВС=4части
13+4=17(частей) - составляют 22см
22:17=1,3(см) - 1 часть
АD=1,3 * 13 = 16,9(см)
ВС=1,3*4=5,2(см)
Т.к. AB =AC+CD+DB, ТО DB РАВНО 17-8-7=2
Из вершины меньшего основания проводим перпендикуляры.
Рассматриваем два получившихся прямоугольных треугольника.
У них два катета равны (это перпендикуляры), гипотенузы равны (равные стороны равнобокой трапеции). По следствию из признака равенства треугольников (3-й признак - равенство треугольников по трем сторонам), два прямоугольных треугольника равны по гипотенузе и катету. А в равных треугольниках равны и соответствующие элементы.
Таким образом, углы при основании равны.
Положим что прямая параллельная AC и проходящая через M , пересекает AB и AC в точках N и Y соотвественно , аналогично Z и X точки на BC и AC соотвественно , так же L , W на AC и BC .
Так как прямые па аралелльны , то четырёхугольники LMXA , MNBZ , MWCY параллелограммы .
Значит AL=XM , MY=WC , MX=BN .
Полученные три треугольника подобны между собой , получаем
(LN/MX)^2 = (27/12)
(ZW/MY)^2 = (3/12)
(MZ/LN)^2 = (3/27)
LN/MX=3/2
ZW/MY=1/2
MZ/LN=1/3
Откуда LN+AL = LN+MX = 5MX/2
Из подобия треугольников NML и ANY получаем
(LN/(LN+AL))^2 = 27/(27+S(ALMX) + 12)
Или 9/25 = 27/(39+S(ALMX))
Откуда S(ALMX) = 36
Аналогично и с двумя другими S(MNBZ)=18 , S(MYCW) = 12
Значит
S(ABC) = 27+12+3+36+18+12 = 108