<em>№4 Боковые ребра треугольной пирамиды взаимно перпендикулярны и равны 8, 6, и 6. <u>Найдите радиус</u> описанной около этой пирамиды сферы.</em>
Пусть данная пирамида МАВС. (см. рисунок)
Из условия следует, что боковые грани данной пирамиды - прямоугольные треугольники.
∆ МАС=∆ МВС по равным катетам. ⇒
их гипотенузы равны: АВ=АС.
По т. Пифагора АВ=10.
∆ МСВ - равнобедренный прямоугольный с катетами, равными 6. ⇒
СВ=6√2 .
Пирамида вписанная, все ее точки лежат на поверхности сферы.
Основание пирамиды лежит в плоскости, пересекающей сферу по окружности с радиусом, равным радиусу описанной вокруг АВС окружности. Для радиуса описанной окружности равнобедренного треугольника
<em>R=a² :√(4a² -b² )</em>
R=100:√328=50:√82
Основание высоты МО пирамиды лежит в центре описанной вокруг АВС окружности.
МО из ∆ АОМ по т.Пифагора:
МО =√(АМ² -АО²) =√(64- (50:√82)²)= √2748/82)
Для осевого сечения сферы диаметр АТ сечения и диаметр МК сферы - пересекающиеся хорды.
<em>Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.</em> ⇒ АО*ОТ=МО*ОК.
ОК=АО²:МО
ОК=(50:√82)²:√(2748/82)=2500:√225336=5,267
Диаметр сферы МК=МО+ОК=√2748/82)+5,267=5,789+ 5,267= ≈11,056
<span>R =D:2= </span>≈ 5,528 (ед. длины)
Проще всего по формуле Герона
p = (7+24+25)/2 = 56/2 = 28
r = √(21*4*3/28) = √(3*3) = 3
5:7 мы сделаем уравнение. Средняя линия равна полусумме оснований.
5х +7х /2 = 24
5х+ 7х= 48
Х= 4
Меньшее основание равно 5х4= 20 Ответ:20
MK=MN+NK=34+8=42 см
ответ: 42 см
1) Дан прямоугольный треугольник АВС с высотой ВД из прямого угла, делящей гипотенузу на отрезки 12 и 16 см .
ВД = √(12*16) = √192 = 4√12 см.
АВ = √(192+12²) = √(192+144) = √ 336 = 4√21 см.
ВС = √(192+16²) = √(192+256) = √448 = 8√7 см.