Точка, лежащая на серединном перпендикуляре<span> к отрезку, равноудалена от концов этого отрезка. Это </span>утверждение верно<span>, т.к. это </span>свойство серединного перпендикуляра<span>(другое название - медиатрисса).</span>
<span>А11. Чему равно дано и что найти, ты и сам в состоянии написать.
Расставив точки А, В, С, Е на окружности, получаем <x=<CAB. Это вписанный угол, который равен половине дуги ВС.:
1)<x=BC:2
Зная углы </span>α<span> и </span>β<span>, находим угол СВЕ:
2)<CBE=</span>α<span>+</span>β<span>=21+49=70</span>°
<span>Угол СВЕ - вписанный, значит равен половине дуги СЕ. Отсюда
3)СЕ=2*<CBE=2*70=140</span>°
<span>Дуга ВС таким образом равна разности дуг ВЕ и СЕ:
4)BC=BE-CE=180-140=40</span>°
<span>5)<x=BC:2=40:2=20</span>°<span>
А12. Дано: АВ:ВС:АС=2:3:4
Найти <A, <B, <C
Пусть АВ=2х, ВС=3х, АС=4х
Зная, что углы А, В и С - вписанные и опираются на дуги ВС, АС и АВ, соответственно, запишем:
1)<A=BC:2=3х:2
<B=AC:2=4x:2=2x
<C=AB:2=2x:2=x
Зная, что сумма углов треугольника равна 180</span>°<span>, запишем:
2)<A+<B+<C=180
3x:2+2x+x=180
3x:2+3x=180
9x:2=180
9x=360
x=40
3)<A=3*40:2=60</span>°
<span><B=2*40=80</span>°
<span><C=40</span>°<span>
А13. Дано: АМ=9 см, ВМ=12 см
Найти: ОА
Угол АМВ - вписанный, опирающийся на полуокружность, значит, он прямой:
1)<AMB=90</span>°
<span>По теореме Пифагора находим неизвестную гипотенузу АВ в прямоугольном треугольнике АМВ:
AB=</span>√<span>AM</span>²<span>+BM</span>²<span>=</span>√<span>9</span>²<span> + 12</span>²<span>=</span>√<span>225=15 см
2)АО=АВ:2=15:2=7,5 см
А21. Расставим на окружности точки А, В, С и Е.
1). <x=<ABE=AE:2
2). АЕ=АВ-ВС-СЕ
3). ВС= 2*<BEC=2*</span>β<span>=2*47=94
4). СЕ=2*<CBE=2*</span>α<span>=2*19=38
5). AE=180-94-38=48
6). <x=AE:2=48:2=24</span>°<span>
А22. Дано: АВ:ВС:АС=1:3:5
Найти: <A, <B, <C
Пусть АВ=х, ВС=3х, АС=5х
Зная, что углы А, В и С - вписанные и опираются на дуги ВС, АС и АВ, соответственно, запишем:
1)<A=BC:2=3х:2
<B=AC:2=5x:2
<C=AB:2=x:2
Зная, что сумма углов треугольника равна 180</span>°<span>, запишем:
2)<A+<B+<C=180
3х:2+5x:2+x:2=180
9x:2=180
9x=360
x=40
3)<A=3*40:2=60</span>°
<span><B=5*40:2=100</span>°
<span><C=40:2=20
А23. Добавить еще один рисунок нет возможности. Используй рисунок из задания А13
Дано: ОА=10 см, ВМ=16 см
Найти: АМ
Угол АМВ - вписанный, опирающийся на полуокружность, значит, он прямой:
1)<AMB=90</span>°
<span>По теореме Пифагора находим неизвестный катет АМ:
2)AM=</span>√<span>AB</span>²<span>-BM</span>²<span>=</span>√<span>2OA</span>²<span>-BM</span>²<span>=</span>√<span>20</span>²<span> - 16</span>²<span> =</span>√<span>144=12 см<span>
</span></span>
4. а=6i-8k=6i+0j-8k → a=(6;0;-8)
|а|=√(6²+0²+(-8)²)=√(36+64)=√100=10
а•b=|a|•|b|•cos(a;b)=10•1•cos60°=10•1/2=5.
если а перпендикулярно c, то а•c=0
a•c=6•4+0•1+(-8)•m=0
24-8m=0
8m=24
m=24/8
m=3.
5. A(3;-1;3)
B(3;-2;2)
C(2;2;3)
Д(1;2;2)
(AB;CД)-?
АВ=(Хв-Ха;Ув-Уа;Zв-Za)=
=(3-3;-2-(-1);2-3)=(0;-1;-1).
CД=(Хд-Хс;Уд-Ус;Zд-Zс)=
=(1-2;2-2;2-3)=(-1;0;-1).
соs(АВ;СД)=(АВ•СД)/(|АВ|•|СД|)
АВ•СД=0•(-1)+(-1)•0+(-1)•(-1)=1
|АВ|=√(0²+(-1)²+(-1)²)=√2
|СД|=√((-1)²+0²+(-1)²)=√2
|АВ|•|СД|=√2•√2=2
соs(АВ;СД)=1/2 →
(АВ;СД)=60°=π/3
6. смотри рисунок.
ДД1=2ДО
ДО - этотвыстота тетраэдра
найдем ДО:
ОС=R (радиус описаной окружности, вокруг треугольника АВС)
R=а/√3
ДО²=СД²-ОС²=а²-а²/3=
=3а²/3-а²/3=2а²/3
ДО=а√(2/3)
ДД1=2а√(2/3)