Интегралы очень простые, тут и решать нечего. Я понимаю, если были бы сложные, там с заменой или с решением по частям. Но тут решать то:
Разность интеграла есть разность интегралов.
То есть каждую часть ты берешь и интегрируешь, далее подставляешь границы.
Ну я в общем все реши, держи:
__________________________________________
Там понятно, что у каждого границы от 1 до 2, поэтому я не писал.
Далее находим их значения:
________________________________________
Далее подставляем границы и получаем:
Но я подумал, желательно тебе расписать еще так:
Так будет легче подставлять границы.
а вот тебе и парабола, через неравенство нашла интервалы х, на которых парабола выше оси х находится-сравни график и решение)))
Используя основное тригонометрическое тождество
и основное свойство дроби
получим
Смотреть файл .цкепошдщщдорпаввы
Аппррол
2) 2x^2 + 18 = 0
2x^2 = -18 | (делим на 2)
X^2 = -9
X1 = 3 и x2 = -3
3) x^2 + x - 6 = 0
D = b^2 -4ac
D = 1^2 - 4*1*(-6) = 1 + 24 = 25
X1 = -1+ корень из 25/2 = -1+5/2 = 4/2 = 2
X2 = -1 - корень из 25/2 = -1 -5/2 = -6/2 = -3
4) так же ка второе
5) 4x^2 - 36 = 0 | делим все на 4
X^2 - 9 = 0
X^2 = 9
X = 3 и x2= -3
6) x^4 -25x +144 = 0
X = t (тут замена, вроде)
X^2 -25x + 144 = 0
D = (-25)^2 - 4*1*144 = 625 - 576 = 49
X1 = -(-25)+ корень из 49 = 25+7 = 32
X2= -(-25) - корень из 49 = 25 -7 = 18
Дальше нужно подставлять куда-то в замену вроде, я не помню