4/x = tg(30°)
x = 4/tg(30°) = 4*cos(30°)/sin(30°) = 4*√3/2 / (1/2) = 4√3
---
∠M = (180-120)/2 = 30°
x/30 = sin (30°)
x = 30*1/2 = 15
По двум сторонам и углу между ними
Если не даны стороны , то пусть диаметр равен
, тогда опустим высоты из вершины конуса на основания. Получим прямоугольный треугольник, треугольник равнобедренный ,так как образующие равны . Тогда из прямоугольного треугольника образующая будет равна
, она же будет равна высоте
, тогда объем
ABCDE пирамида.Е вершина пирамиды.
ABCD прямоугольник лежащий в основании
AB=CD=6, BC=AD=8; находим AC: по теореме Пифагора 6^2+8^2=100 => AC=10
т. О пересечение диагоналей прямоугольника находим OD=10/2=5
ЕО высота пирамиды.и находим его по теореме Пифагора EO^2=ED^2-DO^2 ==>
EO^2=13^2-5^2=144 ==> EO=12 см
Пусть первая сторона равна а, тогда вторая 3а (из отношения 1:3)
Р=2(a+b)
80=2(a+3a)
40=4a
a=10
Первая сторона равна 10, вторая 3*10=30