биссектрисса делит угол на два равных угла по определению. перпендикуляр с биссектриссой делят треугольник на четыре части две из которых образуют два прямых треугольника с одной вершиной. Достаточно доказать что эти два треугольника равны и будет доказано что их гипотенузы так же равны.Но у них два одинаковых угла : первые образованы биссектрисой и по определению равны.Вторые прямые ( по определению перпендикуляра) и также равны между собой и равны 90 градусов.Т.к. сумма углов в треугольнике равна 180 градусам ,то это значит и третьи углы в треугольниках равны. А следовательно и треугольники равны между собой.следовательно у них равные гипотенузы, как собственно и катеты.
S=1/2b sqrt((a+1/2b)(a-1/2b))= 1/2*12 sqrt((10+1/2*12)(10-1/2*12))=6*sqrt(16*4)=48
Пусть из точки А проведены наклонные АВ=8см и АС=6см. , расстояние от точки А до плоскости равно АО-длине перпендикуляра опущенного из этой точки на плоскость. Пусть проекция наклонной FC=[? тогда проекция наклонной АВ=1,5корень из 2*х, по теореме Пифагора из треугольников АВО и АСО выразим AO
АО^2= 6^2-x^2
AO^2=8^2-()1.5корень из 2)^2
приравняем эти равенства 36-х^2=64-2.25*2*x^2, 36-x^2=64-4.5x^2, 3.5x^2=28,
x^2= 28:3.5=8
AO^2=36-8=28
Треугольники АМН и СДН подобны с коэффициентом подобия 2. Так как диагональ равна 18, значит АН + НС = 18 СН/АН = 2
Решив эту систему получаем, АН = 6 НД = 12