Стороны Δ АВС равны АС=5 м, ВС=12 м и АВ=13 м, СН - высота.
Для данных величин выполняется равенство:
13² = 5² + 12²
169 = 25 + 144
169 = 169
тогда по теореме, обратной теореме Пифагора, данный треугольник - прямоугольный. Большая сторона АВ - гопотенуза = 13, .
Тогда высота СН , проведенная из вершины прямого угла С, опущена на гипотенузу АВ и делит треугольник на два подобных треугольника, каждый из которых подобен Δ АВС.
Рассмотрим подобие треугольников АСН и АВС:
СН/СВ = АС/АВ
СН/12 = 5/13
СН = 12*5/13
СН = 60/13
СН приблизительно = 4,6
Ответ: высота равна 4,6 .
<span><em>Вершины треугольника АВС лежат на окружности с центром О, угол АОВ=80º, дуга АВ </em></span><em>относится к дуге</em><span><span><em> ВС так, как относится</em></span><span><span><span><em> 2 к </em><span><em>3.</em>
</span><em> </em></span><span><em><u>Найти углы треугольника АВС</u></em>
</span></span>В подобных задачах обычно дается отношение </span></span>◡АС: ◡ВС, здесь дано отношение известной дуги AB к неизвестной ВС, причем о второй неизвестной ◡АС ничего не сказано.
<u>Решение.</u>
Центральный ∠АОВ=80°. ⇒<span>◡АВ, на которую он опирается, равна 80</span>°.
Тогда
◡АС + ◡ВС =360°-80°=280°⇒
◡ВС=280° - <span>◡АС
</span>Из данного в условии отношения следует:
80°:(280°- <span>◡АС=2:3
</span>240°=560°- 2◡АС
2◡АС=320°
◡АС=160°
Вписанный ∠АВС опирается на эту дугу и равен 160°:2=<span>80°
</span><span>◡ВС=280</span>°<span>-160</span>°<span>-120</span>°
Вписанный ∠ВАС опирается на неё и равен 120°:2=60°
Вписанный ∠АСВ опирается на дугу АВ и равен 80°:2=40°
Сумма углов ∆ АВС=80°+60°+40°=180°
АВ:ВС=80°:120°=2:3
Против угла в 30 градусов лежит сторона в 2 раза больше помойму
Описанный :R
Вписанный :r
Сторона :а
а^2/4=R^2-r^2=12-9=3
a^2=12
a=2(3^1/2)
Отсюда видно что a=R. Значит количество сторон n(a)=6
6√2*2=12√2
или задание не в этом?