Центр вписанной окружности лежит на пересечении биссектрисс. Свойство биссектрисы-она делит противоположную сторону на два отрезка длины которых относятся также как длины соответствующих сторон. Обозначим сторону основания а , боковую в. Тогда в :а/2= 12:5. Отсюда а=50(основа).
Т.к. треугольник равнобедренный, то углы при основании равны.
a=b=128/2=64градуса.
Последний угол равен 180-64-64=52градуса.
Вокруг выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°
Т.е. A+C=180
B+D=180
x+x+33=180
2x=147
x=D=73.5
Решение в скане................