Пусть скорость товарного поезда х км/ч, тогда скорость пассажирского поезда на х+20 км/ч.
360/х- это время за которое товарный поезд прошёл расстояние 360 км
360/(х+20)- это время за которое прошёл товарный поезд это же расстояние .
Так как пассажирский поезд прошёл это расстояние на 3 часа быстрее, то составляем уравнение:
360/х - 360/(х+20)=3
360/х - 360/(х+20) -3=0
Приводим к общему знаменателю :
(360*(х+20) -360х-3х(х+20))/х*(х+20)=0
( 360х + 7200 -360х - 3х^2-60х)/х*(х+20)=0 составим систему уравнений. Для этого приравняем числитель дроби к нулю:
-3х^2 -60х +7200, а знаменатель дроби не может равняться нулю( на ноль делить нельзя): х*(х+20)#( нет у меня символа неравно, обозначу его решеткой)0.
Решаем первое уравнение системы:
-3х^2-60х +7200=0
Разделим каждое слагаемое на -3
Х^2+20х-2400=0
Д= 20^2 - 4 * (-2400)= 400+9600=10000=100^2
Х1= (+60-100)/2= -40/2=-20 не удовлетворяет условию задачи, так как скорость не может быть отрицательная.
Х2=(+60+100)/2= 80 км/час скорость товарного поезда.
Теперь решаем второе уравнение системы: х*(х+20)#0
Х#0 и х+20#0
Х#-20
Найденный нами корень первого уравнения удовлетворяет условию системы. ( х=80), тогда х+20=80+20=100 км/ч скорость пассажирского поезда
25a²-(a+3)²=(5a)²-(a+3)²=(5a-(a+3))(5a+(a+3))=(5a-a-3)(5a+a+3)=
=(4a-3)(6a+3)=3(4a-3)(2a+1)
У=3х-10
Б)у=-3х+3,5............/////
Умножаем
x*(a -1) /(a -1)*(2x +2y) = x / (2x +2y)
сложение
y/(2x +2y) + x/(2x +2y) = (y +x) /(2x +2y)
-x+1,5y+5=0; -x+1,5y= -5. Ответ: -x+1,5y= -5.