n - первое число
n+1 - второе число
тогда
n^2+(n+1)^2=265
раскрываем скобки и решаем квадратное уравнение
n^2+n^2+2n+1-265=0
n^2+2n-132=0
Находим корени:
n1=11, n2=-12
Подходит только один, это число 11, соответственно, второе число 12.
14+18x=-6x+2
18x+6x=2-14
24x=-12
x=-12/24
3mn-4mp=3m(n-mp). ...........
(x-2)(4-x)(x-3)^2>0
нули функции 2;3;4;
Т.к. (x-3)^2 выражение не может быть отрицательным, функция не доходит до нуля и возвращается не изменяя знак.
- + + -
___2____3___4_____
x ∈ (2;3) ∪ (3;4);
2) (x+3)/(3-x) ≤ 0;
на ноль делить нельзя x≠3;
нуль функции -3;
- + -
___-3____3___
x ∈ (-∞;-3] ∪ (3;∞);
3)
нули функции 6;0;
нули функции 1;
+ - +
____0_____6_______
[0;6]
- +
____1____
(-∞;1)
объединяем оба промежутка:
x ∈ [0;1)