Рассмотрим угол, смежный с углом D, который будет равен 180°-40°=140°. Так как прямые параллельны, то сумма 2-ух внутренних односторонних углов равна 180°, значит угол, вертикальный с углом С будет равен 180°-140°=40°. А вертикальные углы равны, значит угол С равен 40°
А). Цитата: "Существование и единственность вневписанной
окружности обусловлены тем, что биссектрисы двух внешних углов
треугольника и биссектриса внутреннего угла, не смежного с этими
двумя, пересекаются в одной точке, которая и является центром
такой окружности".
В треугольнике АВС <ABC+<BCA=180°-<A.
<ABC=180°-<CBP, <BCA=180°-BCK - как пары соответственно смежных
углов.
Окружность (Q;R) - вневписанная окружность треугольника АВС по
определению (из условия). Следовательно, BQ и СQ - биссектрисы углов <CBP и <BCK соответственно.
Тогда <BQC=180°-(1/2)*(CBP+BCK)=180°-(1/2)*(360°-<ABC-<BCA). Или
<BQC=(1/2)*(<ABC+<BCA).
Но <BQC - вписанный угол, опирающийся на дугу ВС, а
<BOC- центральный угол, опирающийся на ту же дугу.
<BOC=2*<BQC = <ABC+<BCA = 180°-<A.
Тогда в четырехугольнике АВОС сумма противоположных углов
<А+<BOC=<A+180°-<A = 180°. Значит около этого четырехугольника
можно описать окружность и при том только одну.
Следовательно, окружности, описанные около треугольника АВС и
четырехугольника АВОС - одна и та же окружность и точка О лежит
на этой окружности, что и требовалось доказать.
б). Пусть R/r=4/3. r=(3/4)*R.
<А+<BOC= 180° (доказано выше).
CosA = -Cos(180-A) = -Cos(BOC).
ВС - общая хорда пересекающихся окружностей.
По теореме косинусов из треугольника ОВС:
BC²=2R² - 2R²Cos(BOC)=2R²+ 2R²CosA=2R²(1+CosA) . (1)
Bз треугольника AВС:
<BJC - центральный угол, опирающийся на ту же дугу, что и <BAC.
<BJC=2<A.
BC²=2r² - 2r²Cos(BJC)=2r²(1-Cos2A) . (2)
Приравняем (1) и (2):
2R²(1+CosA)=2r²(1-Cos2A) или
2R²(1+CosA)=2(9/16)R²(1-Cos2A) или
(1+CosA)=(9/16)(1-Cos2A).
По формуле приведения Cos2A= 2Cos²A-1, тогда
1+CosA=(9/16)(1-2Cos²A+1) => 1+CosA=(9/8)(1-Cos²A).
Пусть CosA= Х, тогда:
8+8Х=9-9Х² или
9Х²+8Х-1=0
Х1=(-4+√(16+9))/9 = 1/9.
Х2=-1 - не удовлетворяет условию, так как <A > 0.
Ответ: CosA=1/9.
Образующая конуса L = 14см. Осевое сечение представляет собой равнобедренный треугольник с боковыми сторонами, равными образующей L = 14см и углом при вершине α = 60°.
Высота Н осевого сечения делит этот угол пополам.
Рассмотрим прямоугольный треугольник с гипотенузой L и катетами Н и R, где R - радиус основания.
Радиус R лежит против угла в 30° и поэтому равен половине гипотенузы
R = 0.5L = 7см.
Площадь основания равна Sосн = πR² = 49π(cм²)
Площадь боковой поверхности Sбок = πRL = 7·14·π = 98π(см²)
Площадь полной поверхности конуса
Sпол = Sосн + Sбок = 98π + 49π = 147π(см²)
Ответ: 147см²
Т.к АОС=ВОС=166:2=83°(т.к вертик)
угол АОВ= 180-83=97°(т.к угол АОВ и угол ВОК смежные)