Найдём MC=AC/2=10/2=5см-mc, и находим 13+12+5=30см
Теорема.
<span>Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис. </span>
Доказательство.
<span>Пусть ABC данный, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Δ AEO = Δ AOD по гипотенузе и катету (EO = OD – как радиус, AO – общая). Из равенства треугольников следует, что ∠ OAD = ∠ OAE. Значит AO биссектриса угла EAD. Точно также доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.</span>