ΔОМD. МD=2 см; ∠МDО=60°; ∠ОМD=30°; ОD=0,5МD=1 см.
ОМ²=МD²-ОD²=4-1=3; ОМ=√3 см.
ΔВМD. ВD=ОВ+ОD=1+1=2 см.
АВСD - квадрат, сторона которого равна √2 см;
площадь равна S=√2²=2 см².
V=(2·√3)/3=2√3 /3 см³.
Как прямые могут быть подобны. <span>АОD и COB - это прямые!</span>
При вращении прямоугольного треугольника вокруг большего катета образуется конус, у которого высотой является больший катет, а радиусом основания будет меньший катет. Образующей конуса является гипотенуза треугольника.
h = 4 см; r = 3 см
Образующая по теореме Пифагора из прямоугольного треугольника
l² = h² + r² = 4² + 3² = 25
l = 5 см
Основание конуса - круг с площадью
S₀ = πr² = π*3²; S₀ = 9π см²
Площадь боковой поверхности конуса
S₆ = πrl = π*3*5; S₆ = 15π см²
Площадь полной поверхности конуса
S = S₀ + S₆ = 9π + 15π = 24π см²
Ответ: площадь полной поверхности конуса 24π см²
Сторона правильного 6-угольника равна радиусу окружности, так как если соединить центр с вершинами, 6-угольник разобьется на 6 равносторонних треугольников со стороной R. сторона квадрата равна R√2, так как квадрат разбивается на 4 прямоугольных равнобедренных треугольника, чьи катеты равны R.
1 случай. Точка A лежит между B и C. Проведем диаметр AE и рассмотрим треугольники ABE и ACE. Они прямоугольные, так как вписанные углы, опирающиеся на диаметр, прямые. Гипотенуза первого треугольника, будучи равна 2R, в два раза больше катета AB. Следовательно, угол BEA =30°, а тогда угол BAE=60°. Во втором треугольнике катеты равны (надо применить теорему Пифагора) ⇒
угол CAE=45°. В сумме получается угол BAC=60°+45°=105°.
2 случай получается из первого, если треугольник ACE, построенный в первом случае, симметрично отразить относительно диаметра AE. Тогда угол BAC будет равен не сумме, а разности полученных выше углов: 60°-45°=15°.
Ответ: 105° или 15°