Ответ:
16√3 см²
Объяснение:
Дано: ΔАВС - равнобедренный, ВС=АВ=8 см.
∠А/∠В=1/4.
Найти S(АВС).
Пусть ∠А=∠С=х° т.к. у равнобедренного треугольника углы при основании равны
Тогда ∠В=4х°.
Проведем высоту ВН, которая является и биссектрисой ∠В по свойству высоты равнобедренного треугольника.
Тогда ∠АВН=1/2 ∠В=2х°
Рассмотрим ΔАВН - прямоугольный, ∠А+∠АВН=90° по свойству острых углов прямоугольного треугольника. Составим уравнение:
х+2х=90; 3х=90; х=30. ∠А=30°, тогда ВН=1/2 АВ = 8:2=4 см по свойству катета, лежащего против угла 30 градусов.
По теореме Пифагора АН=(√АВ²-ВН²)=√(64-16)=√48=4√3 см.
АС=2 АН=4√3 * 2 = 8√3 см
S(АВС)=1/2 * АС * ВН = 1/2 * 8√3 * 4 = 16√3 см²
1) В Δ ABC ∠C=120°
Значит ∠A=
=30° (т.к. Δ равнобедренный)
2) Проведем в этом треугольнике высоту CH из (·)C
3) Δ ACH - прямоугольный по построению
sin∠CAH=
= 30°
CH = sin 30° * 4 = 4 * 0.5 = 2
4) В прямоугольнике ABB1A1 проведем высоту HK, тогда HK = AA1 по св-у прямоугольника, значит HK = 8
5) Соединим (·)K с точкой (·)C
6) CH - перпендикуляр
HK - проекция
CK - наклонная
CK ⊥ HK по Т.Т.П.
Значит ∠CKH - искомый угол
7) tg∠CKH =
= 0.25
∠CKH = arctg (0.25)
Так как MN=NK и ML высота, значит ML и биссектриса, значит ушолLMN=17, значит угол NMK равен 34. Внешний угол равен 146
А это правильно если это правильно спасибо большое
Диаметр - это хорда, проходящая через центр окружности
Окружностью называется фигура, которая состоит из всех точек плоскости, равноудалённых от данной точки.
Многогранник - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками - гранями.
Топология - раздел математики, изучающий в самом общем виде явление непрерывности, в частности свойства пространства, которые остаются неизменными при непрерывных деформациях, например, связность, ориентируемость. В отличие от геометрии, в топологии не рассматриваются метрические свойства объектов (например, расстояние между парой точек). Например, с точки зрения топологии, кружка и бублик (полноторий) неотличимы.
<span>Центральная симметрия - это симметрия относительно центра симметрии, в отличии от осевой, при которой происходит зеркальное отражение, при центральной-инверсия.
Осевая симметрия - зеркальное отражение. (</span><span>Отражательная симметрия)</span>