Проведем АС
МN ll AC т.к. MN средняя линия треугольника АВС
РТ ll АС т.к.РТ средняя линия треугольника АСД
две прямые параллельные третьей параллельны между собой, значит MN ll РТ.
аналогично доказываем что NT ll MP (проведя ВД)
по определению MNPT параллелограмм (если в четырехугольнике стороны попарно параллельны, то четырехугольник параллелограмм)
В рачносторонем треуг. все углы равны по 6о градусов. Высота в правильном треуг. является бис., тогда она делит угол пополам на 30 градусов. Высота образует два прямоугольника рассмотри любой из двух катетом который будет леж напротив угла в 30, по свойству он равен половине гип.Пусть гипотинуза =x тогда катет равен 1/2X составим урвнение на основе теоремы пиф. x^2-1/2x-5=0 Получаем два корня: 5 и -4, -4 не удовлетворяет условию, получаем что гип равна 5, тогда и 1/2x=2,5 +это доказательсво свойства что высота равна стороне равносторон треуг
1)
Дано:
прям. ABCD
AB=12 см
AC - диагональ
угол ACB/углу ACD = 1/2
Найти:
AC-?
Решение:
Диагональ делит прям. на два равных прямоугольных треугольника.
Пусть угол ACB =x, тогда угол ACD=2x.
Угол CAD = углу ACB = x (накерст лежащие при AD||BC и сек. AC)
Расс. тр. ACD
x+2x+90⁰=180⁰
3x=90⁰
x=30⁰
Значит угол CAD=30⁰, угол ACD=2*30⁰=60⁰
Из сво-ва прям. тр-ка, катет лежащий против угла в 30⁰ равен половине гипотенузы ⇒AC=2*CD = 2*16=32 см
Ответ: диагональ прям-ка равна 32 см
2)
Дано:
прям. тр. ABC
угол С = 90⁰
AB=11√11 см
tgα=√2/3
Найти:
AC-?
Решение:
tgα=BC/AC
Введем x, тогда tgα=√2x/3x
По т. Пифагора:
AB²=AC²+BC²
(11√11)²=(√2x)²+(3x)²
1331=11x²
121=x²
x=11
Отсюда:
BC=√2*11=11√2
AC=3*11=33
Ответ: АС равно 33
3)
Дано:
прям. тр. ABC
угол С=90⁰
AB=20
AC=2√19
Найти:
cosβ - ?
Решение:
Cosβ=BC/AB
по т. Пифагора
BC=√20²-(2√19)²=√400-76=√324=18
Cosβ=18/20=0.9
Ответ: cosβ=0.9
Параллелограмм АВСД, АВ=11=СД, АД=23=ВС, ВД/АС=2/3, ВД=2х, АС=3х
ВД в квадрате + АС в квадрате = 2* (АВ в квадрате + АД в квадрате)
4* х в квадрате + 9 х в квадрате = 2*(121+529)
13 * х в квадрате =1300
х=10, ВД=2*10=20, АС=3*10=30
Площадь треугольника можно найти по формуле S=1/2 * a *b *sinC.
Для нахождения синуса С нужно знать α и β. Из теоремы синусов
sinα = a/2R =2/5, sinβ = 24/25.
Угол β может быть и острым(≈73°) и тупым(≈107°), угол α- острый,он меньше β.
Найдем синус С, где С=180°-(α+β).
sin C= sin(α+β)=sinα*cosβ+cosαsinβ. Для нахождения косинуса применим основное тождество sin²β+cos²β=1.
1) β<90. cosα = √21/5. cosβ=7/25. sin C =2/5 * 7/25 +√21/5 *24/25=(14+24√21)/125.
S= 1/2 * 20 *48 *2(7+12√21)/125=192(7+12√21)/25.
2) β>90°. Cosβ=-7/25. sinC=2/5 * (-7/25)+ √21/5 * 24/25 = (24√21-14)/125.
S = 1/2*20*48 * 2(12√21-7)125 =192(12√21-7)/25.