Обозначим одну из высот х, тогда другая высота равна (15 - х)
Площадь параллелограмма равна произведению стороны на высоту.
12х = 8(15 - х)
12х = 120 - 8х
20х = 120
х = 6 - одна высота
15 - 6 = 9 - другая высота
Площадь параллелограмма 12х = 12·6 = 72 или 8·9 = 72
1, 2, 4, 5, 125 градусам,
Касательные к окружности, проведённые из одной точки вне окружности, равны. Значит АВ1=АС1, ВС1=ВА1, СА1=СВ1.
Исходя из этого легко увидеть, что доказать это тождество не возможно (возможно только в частном случае: правильный или равнобедренный треугольник).
В левой части равенства расположены касательные, принадлежащие вершинам А и С, а в правой, принадлежащие А и В.
Если АС1=АВ1, то СА1≠А1В.
Доказано, что равенство неверно.
Площадь заштрихованного кольца, изображенного на клетчатой бумаге (см.рис.) равна 7. Найдите площадь большого круга.
----------
Обозначим радиус малого круга r, большого - R.
Примем длину стороны клетки равной а.
По рисунку легко определить, что r=3а.
<u> Длину </u><u>R</u><u> необходимо вычислить</u>, т.к. по клеткам на его вертикальной и горизонтальной оси нет целочисленных пересечений с границей верхнего круга. Но на внешней окружности есть такая точка. Обозначим её А. Точку пересечения отрезка, проведенного параллельно горизонтальному диаметру большего круга, с вертикальным радиусом меньшей окружности – В, центр окружностей – О.
АВ=4а, ОВ=а
Из прямоугольного ∆ АОВ по т.Пифагора
R²=OB²+OA²=a²+16a²=17a²
Площадь кольца равна разности площадей большого и малого кругов.
πR²-πr²=7
π17a²-9πa²=7
8πa²=7⇒
πа²=7/8
π17a²=17•7/8=119/8 (ед. площади)=14,875 (можно округлить до 15)
---------
При решении задач по рисунку с кругом на клетчатом фоне нужно помнить, что нередко радиус нужно вычислить.