Дано: АВСД - параллелограмм, АЕ - биссектриса, АД=8, МР - средняя линия трапеции АЕСД, АЕ=6. Найти Р(АВСД).
Решение: рассмотрим трапецию АЕСД. МР=1\2 (АД+СЕ); 6=1\2 (8+СЕ);
СЕ=12-8=4;
ВЕ=ВС-СЕ=8-4=4
Рассмотрим ΔАВЕ. ∠ВАЕ=∠ЕАД по свойству биссектрисы; ∠АЕВ=∠ЕАД как внутренние накрест лежащие при ВС║АД и секущей АЕ; тогда и ∠ВАЕ=∠АЕВ, а ΔАВЕ - равнобедренный. АВ=ВЕ=4.
Находим периметр: Р=АВ+ВС+СД+АД=4+8+4+8=24 (ед.изм).
Ответ: 24.
∠С = ∠D = 45°, ⇒ ABCD - равнобедренная трапеция.
AD = BC = 9√2
Проведем АК⊥CD и BН⊥CD.
АВНК - прямоугольник (АК = ВН как расстояния между параллельными прямыми, АК║ВН как перпендикуляры к одной прямой), ⇒
НК = АВ = 6
ΔВНС: ∠ВНС = 90°, ∠ВСН = 45°, ⇒ ∠СВН = 45°, значит
ВН = НС
По теореме Пифагора
ВН² + НС² = ВС²
2ВН² = 162
ВН² = 81
ВН = 9
НС = ВН = 9
ΔDAК = ΔCBН по гипотенузе и острому углу, значит
DК = НC = 9
CD = DК + KН + НC = 9 + 6 + 9 = 24
Sabcd = (AB + CD)/2 · BН
Sabcd = (6 +24)/2 · 9 = 15 · 9 = 135
Угол АБС=130 градусов
Угол АДС=130градусов
Угол БСД=БАД=50градусов