Периметр ромба равен P = 4a, где а - сторона ромба, отсюда а = P/4 = 148/4 = 37.
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Обозначим половины диагоналей за b и с. Тогда разность половин диагональ равна 1/2•46 = 23. Составим систему, используя теорему Пифагора:
37² = b² + c²
b - c = 23
1369 = (c + 23)² + c²
b = c + 23
1369 = c² + 46c + 529 + c²
b = c + 23
2c² + 46c - 840 = 0
b = c + 23
c² + 23c - 420 = 0
c1 + c2 = -23
c1•c2 = -420
c1 = -35 - не уд. условию
c2 = 12
с = 12
b = 12 + 23
c = 12
b = 35
Значит, половины диагоналей равны 12 и 35 см.
Длина меньшей диагонали равна 1/2•12 см = 24 см.
Ответ: 24 см.
S круга =πR²; R=3
Sкруга=π·3²=9π
Закрашено 5/8 круга, значит 5/8·9π= (45π)/8=5,625π
если π≈3,14 ,то 5,625·3,14=17,6625
По теореме косинусов:a^2=b^2+c^-2*b*c*cosα
a^2=5^2+21^2-2*5*21*cos60
a^2=25+441-210*(1/2)
a^2=361
a=19
итак по началу рассмотрим треугольник AOD AD=BC=16
AC=BD КАК ДИАГОНАЛИ они точкой пересечения делятся пополам, AO=12=OD
PAOD=16+12+12=30