f(x) = (1-sinx)/(1+sinx)
f'(x) = ((1-sinx)'(1+sinx)-(1-sinx)(1+sinx)')/(1+sinx)^2 = (-cosx(1+sinx) - cosx(1-sinx))/(1+sinx)^2 = (-cosx-sinxcosx - cosx + cosxsinx)/(1+sinx)^2 = (-2cosx)/(1+sinx)^2
1) sin²β - cos²(α - β) + 2cosα·cosβ·cos(α - β) = sin²β + cos(α - β)·(2cosα·cosβ - cos(α - β)) = sin²β + cos(α - β)·(2cosα·cosβ - (cosα·cosβ + sinα·sinβ)) = sin²β + (cosα·cosβ + sinα·sinβ)·(cosα·cosβ - sinα·sinβ) = sin²β + cos²α·cos²β - sin²α·sin²β = sin²β·(1 - sin²α) + cos²α·cos²β = sin²β·cos²α + cos²α·cos²β = cos²α·(sin²β + cos²β) = cos²α
2) cos²β + cos²(α - β) - 2cosα·cosβ·cos(α - β) = cos²β + cos(α - β)·(cos(α - β) - 2cosα·cosβ) = cos²β + cos(α - β)·(cosα·cosβ + sinα·sinβ - 2cosα·cosβ) = cos²β + (cosα·cosβ + sinα·sinβ)·(sinα·sinβ - cosα·cosβ) = cos²β + sin²α·sin²β - cos²α·cos²β = cos²β·(1 - cos²α) + sin²α·sin²β = cos²β·sin²α + sin²α·sin²β = sin²α·(sin²β + cos²β) = sin²α
Ответ в приложении //$#@/$#@!#/#@@