Так как вектор m противоположно направлен вектору b, то вектор m равен число
(-p) умноженое на вектор b. Вектор m будет иметь координаты b(-2p;-2p).
вектор m имеет туже длину, что и вектор a. Длинна вектора a равна корень квадратный из 2 в степени 2+2 в степени 2, тоесть равна 2 умноженое на крень из 2.
Длинна вектора m равна корню квдаратному из (-2p) в квадрате+(-2p) в квадрате, тоесть равно 2корень из 2 умноженое на p
2 корень из 2 умноженое на p равно 2 корень из 2
p равно 1
значит вектор m имеет координаты (-2;-2)
Думаю так. Рада была помочь.
Получается треугольник АМВ. Чтобы лучше представить возьми учебник, это две плоскости. Приоткрой книгу и поставь между страницами ручку, чтобы книга не закрылась. Ручка это отрезок АВ. Точка М лежит на переплете. У тебя получается равнобедренный треугольник в котором один угол равен 60. Значит он равносторонний. Все стороны будут по 4дм
Сумма углов треугольника равна 180 градусов.
Внешний угол треугольника - это угол между стороной теугольника и продолжением другой его стороны.
<span>Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
</span>
Это потому, что сумма углов треугольника равна 180 градусов и сумма смежных углов равна 180 градусов. Общая составляющая этих сумм - величина угла, смежного с внешним углом. Поэтому получается, что сумма двух других внутренних углов равна величине внешнего угла.
Пусть D - середина гипотенузы AC, M лежит на AB, N лежит на BC. Поскольку вписанный угол B прямой, он опирается на диаметр. Итак, MN - диаметр этой окружности. По условию AC=2MN, причем AD=DC=BD (медиана прямого угла равна половине гипотенузы). Поэтому BD, будучи хордой этой окружности, равна диаметру. Следовательно, BD также является диаметром. Поэтому диагонали BMDN в точке пересечения делятся пополам, откуда BMDN - параллелограмм, а раз угол B прямой, это прямоугольник. Хотя это уже для нас не важно. Важно то, что MD параллельно BC, откуда MD - средняя линия треугольника ABC, то есть M - середина AB. Точно так же N - середина BC.