(360°-88°)/2=136° выведи эту прямую из угла ровно противоположно биссектрисе.то есть получим биссектрису противоположного угла.
Площадь основания шарового сегмента S=πr².
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
Ответ: V = 228π.
Параллелограмм АВСД АВ=6см АС=8см Уг ВАС=60 Из В на АС опустим высоту ВМ Тр-к АВМ прямоугольный Уг АВМ=90-60=30 АМ=АВ/2=6/2=3 как угол против 30 ВМ=кор из АВ2-АМ2=36-9=25=5см S=АС*ВМ= 8*5=40см2
В прямоугольном треугольнике ABC проведем медиану CD. Построим окружность с центром в точке D и радиусом, равным AD.
Точка B также будет лежать на данной окружности, т.к медиана CD разделила отрезок AB на стороны AD=DB, следовательно AB - диаметр
По условию угол ACB - прямой и опирается на диаметр AB, следовательно угол ACB - вписанный, поэтому точка С также лежит на окружности, значит CD - радиус и будет равен AD и DB по определению радиуса.
AD и AB - половины гипотенузы. Таким образом, медиана, проведенная к гипотенузе равна половине гипотенузы, что и требовалось доказать.