У меня так получилось, решила 2 способами и ответ один и тот же так что пиши как есть ибо другого ответа не может быть
<span>Без рисунка объаснить сложно. См. вложение.
Даны прямые а и b.
Нужно на прямой а построить точку (пусть это будет точка М), расстояние от которой до прямой b будет равно длине отрезка PQ,
Известно, что<em> расстояние от точки до прямой равно длине перпендикуляра</em>, <em>проведенного из этой точки к данной прямой</em>.
<span>Построим на прямой b перпендикуляр по общеизвестному способу: начертим две пересекающиеся окружности одинакового произвольного радиуса с центрами на прямой b, точки пересечения соединим и получим перпендикуляр.
На этом перпендикуляре отложим <u>ТЕ=длине отрезка PQ</u>.
Через точку Е проведем параллельно прямой b прямую до пересечения с прямой а. ( Это сделаете так же, как строили перпендикуляр к b)
Так как расстояние между всеми точками параллельных прямых одинаково, точка М на прямой а и есть искомая точка.
Расстояние от нее до прямой b равно длине отрезка PQ</span></span>
Ответ:
16
Объяснение:
Угол PBK = 90° и опирается на дугу KHP, значит дуга KHP = 180°, значит, хорда PK диаметр окружности, значит PK=16
При построении используются свойства ромба:
диагонали в точке пересечение делятся пополам и перпендикулярны;
противоположные углы равны;
диагонали делят углы пополам (т.е. являются биссектрисами углов).
проводим две перпендикулярные прямые, от точки пересечения откладываем на одной из них половину заданной диагонали в обе стороны. с концов полученного отрезка проводим лучи так, чтобы полученный угол был равен заданному, а отрезок был его биссектрисой. пересечения лучей на второй перпендикулярной линии есть вершины заданного ромба.