Пусть дана правильная призма
- искомое сечение, им является равнобедренный треугольник
S=1/2*BC*
боковые ребра перпендикулярны основанию, тогда по т Пифагора найдем
=
BK=KC=3
найдем AK=
S=1/2*6*
Задча №1:
одна сторона х
вторая сторона 2х
третья сторона (х+3)
периметр=23см
х+2х+х+3=23
4х=20
х=5см первая сторона
5*2=10см вторая сторона
5+3=8см третья сторона
Задача №2:
КР=РL=y
КМ=МL=х
МР=8
треугольник КРМ=треугольнику РМL по I признаку (КР=РL, т.к. МР медиана (она же является и высотой в равнобедренном треугольнике), МР - общая сторона, уголМРК=углуМРL, т.к. МР медиана)
По теореме Пифагора составим ур-ие:
y^2=x^2-8^2
x+y+8=24
x+y=16
y=16-x
(16-x)^2=x^2-64
256-32x+x^2=x^2-64
-32x=-64-256=-320
x=10 см
y=16=10=6см
KL=6+6=12см
Периметр треугольника КМL=10+10+12=32см
D1=10, d2=16
S=d1*d2/2
S=10*16/2=80
<span>1) Дано: ∠М = 72°, ∠О = 105°
Найти: углы трапеции
Решение:
Сумма углов, прилежащих к боковой стороне трапеции, равна 180°.
∠Р = 180°- ∠М = 180° - 72° = 108°
∠К = 180° - ∠О = 180° - 105° = 75°
2) Дано: ∠ОМК = 38°, ∠РКМ = 48°
</span><span>Найти: ∠OPK и ∠РОМ
Решение:
∠ОРК = ∠РКМ = 48° как накрест лежащие при пересечении МК║РО секущей РК.
∠РОМ = ∠ОМК = 38° как </span><span><span>накрест лежащие при пересечении МК║РО секущей ОМ
</span>3) Дано: ∠ОРК = 72°, а ∠РОМ = 48°
</span><span>Найти: углы треугольника МКN
Решение:
</span>
<span>∠NКМ = ∠ОРК = 72° как накрест лежащие при пересечении МК║РО секущей РК.
</span><span><span><span>∠NМК = </span>∠РОМ = 48° как </span>накрест лежащие при пересечении МК║РО секущей ОМ</span>
∠МNK = 180° - (72° + 48°) = 180° - 120° = 60°
Треугольник равнобедреннный, а в таких треугольниках 2 стороны всегда равны. Так как треугольник тупоугольный, то это значит, что сторона, лежащая напротив тупого угла самая большая по теореме о соотношениях между сторонами и углами треугольника. Из условия следует, что нам нужно найти меньшую сторону, то есть равные стороны:
x+17+x+x=77
3x+17=77
3x=60
x=60:3=20см.
Ответ:20 см