1) Трапеция ABCD. По условию BC:AD=2:3 ⇒ BC=2a , AD=3a .
S(ABCD)=50 см² .
h=CH⊥AD , h - высота не только трапеции, но и ΔACD и ΔАВС.
S(ABCD)=S(ABC)+S(ACD)=S₁+S₂ =1/2*2a*h+1/2*3a*h=
=1/2*h(2a+3a)=1/2*h*5a=5/2*ah
50=5/2*ah ⇒ ah=50:5/2=20
S₁=1/2*2ah=ah=20 , S₂=1/2*3a*h=3/2*ah=3/2*20=30
2) ВС=2а , AD=3a , h=MH⊥AD, h₁=OM , h₂=OH , h=h₁+h₂ .
Из пункта №1: 3ah=3*20=60
Держи, нижний рисунок - как выглядит пар-грамм правильно и как проверка площади. 1 клетка - 1мм²
АО=R=5√2 см, АС=r - радиус сечения.
Площадь поверхности шара: Sш=4πR²=4π·50=200π.
Площадь сечения: Sc=πr².
Sш=8·Sc,
200π=8πr² ⇒ r²=200π/8π=25.
В прямоугольном тр-ке АОС ОС²=АО²-АС²=50-25=25,
ОС=5 см - это ответ.
Сторона правильного 6-угольника равна радиусу окружности, так как если соединить центр с вершинами, 6-угольник разобьется на 6 равносторонних треугольников со стороной R. сторона квадрата равна R√2, так как квадрат разбивается на 4 прямоугольных равнобедренных треугольника, чьи катеты равны R.
1 случай. Точка A лежит между B и C. Проведем диаметр AE и рассмотрим треугольники ABE и ACE. Они прямоугольные, так как вписанные углы, опирающиеся на диаметр, прямые. Гипотенуза первого треугольника, будучи равна 2R, в два раза больше катета AB. Следовательно, угол BEA =30°, а тогда угол BAE=60°. Во втором треугольнике катеты равны (надо применить теорему Пифагора) ⇒
угол CAE=45°. В сумме получается угол BAC=60°+45°=105°.
2 случай получается из первого, если треугольник ACE, построенный в первом случае, симметрично отразить относительно диаметра AE. Тогда угол BAC будет равен не сумме, а разности полученных выше углов: 60°-45°=15°.
Ответ: 105° или 15°