Проведём ВМ║АD. Четырехугольник АВМD- параллелограмм ( стороны попарно параллельны)
DM=AB=18 см
В ∆ ВМС ∠ВМС=∠<span>АDМ. </span>
МС=DC-DM=27-18=9
По т.косинусов -cos угла ВМС=[ВС*- (ВМ*+МС*)]/2BM•BC⇒
cos ∠BMC=18/54=1/3
<span>Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними. </span>
S ABMD= AD•DM•sin ADM
sin2 α + cos2 α = 1⇒
sin ∠ADM=√(1-1/9)=√8/3=2√2/3
S ABMD=18•3•2√2•3=36√2 см²
S∆ ABD=SABMD/2=18√2
В трапеции треугольники, образованные при пересечении диагоналей, подобны. k=DC/АВ=27/18=3/2
<span>Тогда DB=DK+KB=5 частей АН- общая высота треугольников АКD и АDВ .</span>
<span>Отношение площадей треугольников с равными высотами равно отношению их оснований. </span>
<span>S ∆ ADK=3/5 S∆ADB=3•18√2/5=54√2/5=10,8√2 см</span>²
------Примечание. Это один из вариантов решения этой задачи. Другой дан мной 6.03 этого года.
ΔАВК: ∠К = 90°, ∠А = 30°, ⇒ АВ = 2ВК = 2 см
по теореме Пифагора АК = √(АВ² - ВК²) = √(4 - 1) = √3 см
Проведем высоту СН.
СН = ВК как высоты одной трапеции, СН ║ ВК как перпендикуляры к одной прямой, значит, КВСН - прямоугольник.
КН = ВС = 2√3 см
ΔАВК = ΔDCH по гипотенузе и катету (AB = CD так трапеция равнобедренная и СН = ВК), значит
AK = HD = 2√3 см
KD = KH + HD = 3√3 см
Проведем МР⊥AD. МР - средняя линия треугольника KBD,
МР = ВК/2 = 0,5 см
Skmd = 1/2 · KD · MP = 0,5 · 3√3 · 0,5 = 3√3/4 см²
Теорема о сумме углов треугольника гласит, что сумма углов = 180гр
Значит 3ий угол равен 180 - (40+60) = 80гр
3ий угол равен 80гр
Zas Hollywood go to 5 holiday season and a few days.