обозначим треугольник АВС.
угол А=45гр,угол С=30гр.
Решение:
угол В=180-(30+45)= 105 градусов
проведем высоту ВН.
рассмотрим треугольник АВН:
угол Н=90 градусов.
АН=АВ*cosА
АН=4*cos45
АН=4*(<span>√2)/2=2√2</span>
по теореме Пифагора:
АВ^2=АН^2+ВН^2
НВ=2√2
рассмотрим треугольник ВНС:
НС=ВН/tgС
НС=2√6
АС=2(√2+√6)
рассмотрим треугольник ВНС:
по теореме Пифагора:
ВС^2=НС^2+НВ^2
ВС=4√2
Ответ:ВС=4√2,АС=2(√2+√6),угол В=105 градусов
Δ ABC _ остроугольный AH ┴ BC ; HK ┴ AB ;HL ┴ AC .
--------------------------------------------------------------------------------------
четырехугольник BKLC<span> вписанный ---> ?</span>
<AKH + < ALH =90° + 90° =180° значит около четырехугольника AKH L можно описать окружность (центр в середине гипотенузе AH ) .
< C + <LKB = <C +<LKH +< BKH = <C +<LKH +90° = <C +<LAH +90° =90° +90°=180°
(<LKH =<LAH как вписанные углы опирающиеся на одну и ту же дугу (HL) .
Следовательно около четырехугольника AKH L можно описать окружность т.е.
четырехугольник BKLC вписанный .
Угол В = 60°
Угол А = 90°
Следовательно, угол С = 180°-(60°+90°)=30°.
А катет (ВС), лежащий против угла в 30°, равен половине гипотенузы.
Следовательно, гипотенуза АВ = 6×2 = 12 см.
Всё сделано лично мной. Копирование запрещено©
рассмотрим треугольник, образованный высотой, опущенной на основание и наклонной боковой стороной. Он прямоугольный и равнобедренный. Значит высота трапеции равна разнице между основаниями 15-5 = 10
площадь равна высоте умноженной на полусумму оснований 10 * (15+5)/2 =100