<em>Сторона описанного правильного треугольника на √6 больше стороны правильного четырёхугольника, вписанного в ту же окружность. <u>Найти сторону треугольника.</u></em>
Правильный четырехугольник - квадрат, и диаметром окружности, в которую он вписан, является его диагональ.
Обозначим вписанный квадрат КОМН
Пусть его стороны=а.
Тогда диаметр РН описанной вокруг него окружности равен а√2,
радиус <em>ОН</em>=а√2):2=a/√2
Стороны описанного треугольника АВС=а+√6
Радиус ОН вписанной в него окружности =ВН/3
ВН=АВ*sin 60º=√3*(а+√6):2
<em>OH</em>=√3*(а+√6):6
Приравняем оба значения ОН:
a/√2=√3*(а+√6):6 из чего следует
а=(а+√6):√6⇒
a=√6:(√6-1)
АВ=[√6:(√6-1)]+√6
<span>АВ=(√6+6-√6):(√6-1)=6:(√6-1)</span>
AB=4
OK=3
S сеч=AB*AC
4*AC=32
AC=8
AOC- равнобедренный, так как AO=OB ( как радиусы)
OK - высота и медиана
по теореме Пифагора
AO=
R=5
V=πR²*H
V=π*25*4=100π
Ответ:1
Решение первой задачи простое вот есть угол 30 град
есть такая штука которая глласит что в прямоугольном треугольнике против угла в 30 град лежит сторона равная половине гипотенузы
благодаря ей мы можем найти гипотенузу она будет равна 12
далее мы находим по теореме пифагора сторону ВС она будет равна квадратный корень из 108(странное число!!!!!!)
потом видим прямоугольный треугольник BHC(H- точка пересечения медиfys и АС)
вот в этом треуголнике нам известно НС и ВС
используем теорему пифагора и получаем число квадратный корень из 117
(прошу прощения за орфографические ошибки и прошу перерешать задачу самому или самой я могу ошибаться в вычислениях я поазал идею)
Пусть АВ=А1В1=х, ВС=В1С1=у, ВВ1=h, ∠В=∠В1=α.
По условию В1М=х/2, В1N=2у/3, ВК=у/3.
Тр-ки В1МN и BНK подобны так как соответственные стороны параллельны и ∠В=∠В1. Их коэффициент подобия: k=В1N/ВК=(2у/3):(у/3)=2. Соответственно коэффициент подобия их площадей k²=4.
S1=S(В1МN)=(1/2)·(х/2)·(2у/3)·sinα=xy·sinα/6.
S2=S(BHK)=S(B1MN)/k²=xy·sinα/24.
Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3.
Объём пирамиды ВНКВ1MN:
V1=h[(xy·sinα/6)+(xy·sinα/12)+(xy·sinα/24)]/3=7xyh·sinα/72.
Объём призмы АВСА1В1С1:
V2=xyh·sinα/2.
Объём многогранника АСКНА1С1NM:
V3=V2-V1=(xyh·sinα/2)-(7xyh·sinα/72)=29xyh·sinα/72.
V1:V3=7:29 - это ответ.
a)Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
В треугольнике АВС и треугольнике СDA :BC=AD,AC=CA, и угол 1=углу 2 -из этого следует что они равны.
б) исходя из равенства этих треугольников следует,что сторона AD=BC=17 см
СD=AB=14 см