(1) В равнобедренном треуг. АВС с основанием АС проведены медианы АЕ и СD. Докажите, что а) треуг. АВЕ = СВD; б) треуг. DOE и тр
<span><span>еу. АОС - равнобедренные, где О - точка пересечения АЕ и CD; в) ОВ - биссектриса угла DOE. </span><span> (2) треуг. АВС = DEF. Оба равнобедренные. Найти периметр АВС, если DE - 4см; EF - 5см
А) Рассмотрим треуг. АВЕ и СВД. АВ = ВС как боковые стороны равнобедренного треуг. АВС. ВЕ = ВД как половинки боковых сторон равнобедренного тр-ка АВС (т.к. АЕ и СД медианы). Угол В у этих тр-ков общий. Следовательно тр-ки АВЕ = СВД по первому признаку. б) Рассм. тр-ки ДОЕ и АОС. В равнобедренном тр-ке медианы, проведенные из вершин при основании к боковым сторонам равны и медианы пересекаются в одной точке и точкой пересечения делятся в отношении 2 : 1 считая от вершины. Значит АЕ = СД, ОД = ОЕ = 1/3 АЕ, АО = ОС = 2/2 АЕ. Треугольник, у которого две стороны равны, называется равнобедренным. Следовательно тр-ки ДОЕ и АОС равнобедренные. в) Повторюсь, медианы треугольника пересекаются в одной точке (эта точка называется центроид). Значит точка О лежит на медиане, проведенной из вершины В к основанию. Но медиана, проведенная из вершины равнобедренного треугольника к основанию является также и бисектриссой. Значит точка О лежит на бисектриссе, а точки Д и Е принадлежат боковым сторонам равнобедренного тр-ка АВС, следовательно ВО бисектрисса угла ДОЕ.
2. У равных тр-ков равны соответствующие стороны и углы. Пусть DE = DF = 4 см - боковые стороны, FE = 5 см - основание, тогда периметр DEF = 4 + 4 + 5 = 13 см. И как было сказано вначале, что у равных тр-ков равны соответствующие стороны, то АС = АВ = 4 см, ВС = 5 см. Р = 13 см.
Но может быть и другой вариант решения, поскольку в задаче не указано какая из сторон является основанием, а какая боковая, поэтому. EF = DF = 5 см - боковые стороны, DE = 4 см - основание, Р = 5 + 5 + 4 = 14 см. Следовательно периметр тр-ка АВС = 14 см.