Ищем гипотенузу=√25+25*3=10 синусВ=5/10=0,5 ИЛИ 30 градусов
S осн=10*5√2*sin 45°=10*5*√2*√2/2=50 cм²
dосн=√(10²+(5√2)²-2*10*5√2*соs 45°)=√(100+50-100√2*√2/2)=√50
h пар=√(d²-d²осн)=√(100-50)=√50=5√2
V=Sосн*h=50*5√2=250√2
Угол АОС=80° ;
угол АВС - ? .
____________
по теореме 11.5 :
угол , вписаный в окружность , равен половине центрального угла .
Тогда :
угол АВС = 80÷2 = 40° .
Ответ : 40 .
<em>В равнобедренный треугольник вписан круг, центр которого удален от вершины треугольника на 102 см, а точка касания делит боковую сторону на отрезки, длины которых относятся как 8:</em><span><em>9, считая от угла при основании. </em><u><em>Найти площадь этого треугольника.</em>
</u></span>Пусть коэффициент отношения отрезков сторон будет х.
Тогда<u> отрезки боковых сторон</u> будут 8х и 9х.
По свойству отрезков касательных из одной точки к окружности<u> половина МС</u> основания треугольника равна 8х.
Выразим высоту треугольника по т. Пифагора из боковой стороны и половины основания:
ВМ²=(17х)²-(8х)²=225х²
ВМ=15х
<u>Из подобия треугольников ВМС и ВОК</u>
ВС:ВО=ВМ:ВК
17х:ВО=15х:9х
15 х ВО=153х²
ВО=10,2х
10,2х=102 см
х=10 см
Отсюда высота ВМ треугольника равна
15х=15<span>·</span>10=150 см
Основание АС=160 см
S Δ АВС=ВМ·АС:2=150·160:2=1200 см²
правда я не уверена.с углами a и b